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Abstract

In this work we present a simple method of improving the

suitability of data generated using cycle-consistency GANs

in the context of day-to-night domain adaptation. While Cy-

cleGANs produce visually pleasing outputs, they also en-

code hidden (steganographic) information about the source

domain in the generated images, which makes them less

suitable as training data generators. We reduce the amount

of steganographic information hidden in the generated im-

ages by introducing an end-to-end differentiable image de-

noiser in between the two generators. The role of the de-

noiser is to strip away the high frequency, low amplitude

encoded information, making it harder for the generators

to hide information that is invisible to the discriminator.

We benchmark the suitability of data generated using our

simple method in the context of simple domain adaptation

for semantic segmentation, comparing with standard Cycle-

GAN, MUNIT and DRIT and show that our method yields

better performance.

1. Introduction

Cycle-consistency GANs have become popular ever

since their introduction, and have been applied for artis-

tic purposes and domain adaptation in fields like robotics

and medical image analysis, where acquiring paired images

from other domains is at best expensive, and at worst im-

possible. It was recently shown [3], however, that generated

images contain hidden (steganographic) information about

the source domain, and that the generators can end up ”hal-

lucinating” content in order to fool the discriminators. The

abject simplicity that has made CycleGANs so popular is

also its weak point: in order to minimize the reconstruc-

tion loss, the two generators cooperatively develop a com-

mon, high-frequency encoding for source domain informa-

tion which is often not picked up by the discriminators. This

inclusion of encoded source data raises concerns regarding

the suitability of the generated data for domain adaptation

training or fine-tuning, and in critical setups such as med-

ical analysis or autonomous driving. A simple example is

Figure 1: Our method reduces the amount of information

hidden in the generated images of cycle-consistency GANs.

Top row, from left to right: input day time image, fake night

time image and reconstructed day image generated by stan-

dard CycleGAN. Bottom row: input day time image, fake

night time image and reconstructed day image generated by

our improved CycleGAN. In contrast to the standard Cycle-

GAN model, our method drastically reduces the amount of

steganographic information hidden in the generated image,

and as such is unable to accurately reconstruct the input im-

age.

that of generating night time images from day time images,

for training a semantic segmentation task. The segmenta-

tion model will learn to decode the steganographic daytime

information, which won’t be present in the real night time

images, leading to a lower bound on performance, spurious

results, and an inefficient use of model parameters.

In this work, inspired by the study of [6] in combating

adversarial noise, we present a simple method of reducing

the amount of cooperation between the two generators by

introducing an end-to-end differentiable image denoiser in

between the two generators. The role of the denoiser is

to strip away the high frequency, low amplitude informa-

tion, making it harder for the generators to hide informa-

tion that is invisible to the discriminator, without having

to employ an over-parameterised discriminator that would
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destabilize training. We benchmark the suitability of data

generated using our method in the context of day-to-night

domain adaptation for semantic segmentation. To focus on

the improvement brought by having better data, we simply

apply day-to-night style transfer to the training split of the

Cityscapes [4] dataset and train a semantic segmentation

model (Deeplab V3+[2]) on the generated data. We test the

trained segmentation models on the test split (no train split

available) of the NightTimeDriving[5] dataset. We compare

our method with standard CycleGAN[12], MUNIT[8] and

DRIT[9], and show that the semantic segmentation model

trained on data generated using our method has better per-

formance.

2. Related Work

2.1. Cycle­consistency GANs and steganography

CycleGANs are a popular tool for unpaired image-to-

image translation, as opposed to previous methods that re-

quire image pairs from both domains. Using an adversarial

loss to train a generative model implies learning a transfor-

mation GAB : A → B such that the distribution of im-

ages from domain A rendered in domain B cannot be dis-

tinguished from the distribution of real images from domain

B. However, this poses a problem, since there can be many

images whose distribution is similar to domain B, but with

meaningless content. In order to preserve the structure of

the image, a cycle consistency constraint is employed, by

introducing a second transformation model GBA : B → A

[11].

Although advantageous, CycleGANs pose a major draw-

back, as shown in a study by [3], where aerial photographs

are translated to maps. The authors find that the model hides

information about the aerial image into the generated map

(even in solid-color areas), ensuring that aerial images will

be reconstructed back with the finest details. By adding

high-frequency noise, they compose a map b∗ (that is vi-

sually similar to an original map b0) and show that the gen-

erator GBA can be forced to recreate a particular aerial pho-

tograph a∗ from b∗. As the difference between the b∗ and b0
required by the generator in order to produce a∗ decreases

during training, they conclude that GBA is colluding with

GAB’s adversarial attack, where GAB encodes information

about the source image and GBA learns to decode the hid-

den information and recreate the source image in such detail

that would otherwise be difficult to reconstruct, since there

are many aerial photos that can correspond to one map.

2.2. Reducing steganography in cycle­consistency
GANs

In a high-fidelity image to image translation task, [7]

tackle steganography by ensuring an uncooperative setup

and adding a residual/style path. In the traditional cooper-

ative setup, the networks are trained on each other’s out-

put, which means that if the second network is able to com-

pensate for the first network’s error, then the first network

doesn’t need to improve. The proposed solution is to only

train the networks when input is real, instead of both real

and generated. Their architecture consists of two networks:

a disentangler network D, which splits the image from do-

main V into C and R, where C is another image domain

and R is the residual between the two domains, and an en-

tangler network E that merges C and R back to V . In the

first learning cycle, D is updated based on the reconstruc-

tion error of v, where D(v) = (c′, r′) and E(D(v)) = v′,

whereas in the second cycle, E is updated based on the re-

constructions of r and c, where E generates E(c, r) = v′

and D disentangles D(v′) = (c′, r′). In both cycles the in-

put data is real: in the first cycle, v is an image from domain

V , in the second cycle, c is an image from domain C and r

is generated from a random v.

As one characteristic of CycleGAN is the deterministic

one-to-one mapping, [1] propose Augmented-CycleGAN in

order to ensure many-to-many mappings across domains.

By allowing the two generators to be conditional on a latent

space Z, one could sample different z ∼ p(z) to generate

multiple samples in the target domain, while holding the

source domain fixed. However, the cycle-consistency re-

construction error implicitly assumes unimodality, since all

images generated across samples z will have to be close to

the original image, for the loss to be minimized. Their ap-

proach is thus to learn mappings between augmented spaces

A×Zb and B×Za, where Za and Zb are latent spaces that

encode missing information: Za holds information about a

that does not exist in the generated image b and vice-versa.

Their loss function is amended to include two adversarial

and two reconstruction losses for latent codes Za and Zb.

They check for steganography by introducing noise in the

source domain images and evaluating the reconstruction er-

ror in the target domain and conclude that information is

captured in the latent codes rather than being hidden in the

generated images.

We draw our inspiration from [6], who study the effect

of JPEG compression on adversarial perturbation and con-

clude that small perturbations can be eliminated using com-

pression. We replace the non-differentiable JPEG compres-

sion with a learned denoising network.

3. Learning to reduce steganography

3.1. The image denoising network

As most of the hidden information inside cycle-

consistency GANs is represented by high-frequency, low-

amplitude information [3], we choose to use a differentiable

denoiser to reduce this type of information. The intuition is

that, within each cycle, the generators will be forced to en-

code a better structure-preserving output, using lower fre-
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quency representations, while still minimizing discrimina-

tor losses. The architecture is presented in Figure 2.

Figure 2: The architecture of one of the two cycles used to

train traditional cycle-consistency GANs, augmented with a

differentiable image denoising network in between the two

generators. The discriminator always receives an unfiltered

generated image.

We make use of a residual image denoiser R, which, in-

variant to the domain, takes and image Iz affected by noise

z and extracts the noise component z. The original, clean

image I is then reconstructed by subtracting the noise from

the noise-affected image:

Iz = I + z (1)

R(Iz) ≈ z (2)

I = Iz −R(Iz) (3)

3.2. Cycle­Consistency GANs

Following [12] and using the image denoiser R de-

scribed above, we use 2 generators: given an image IA from

domain A (day) and an image IB from domain B (night),

we employ generator GAB to translate IA to domain B and

generator GBA to translate the image back into the original

domain. We add the image denoiser R in between the two

generators. On the output of each generator, we apply an

adversarial loss: discriminators DB for generator GAB, and

DA for GBA respectively. The adversarial losses are:

LBadv
= (DB(GAB(IA))− 1)2 (4)

LAadv
= (DA(GBA(IB))− 1)2 (5)

The final adversarial objective Ladv to be minimized be-

comes:

Ladv = LBadv
+ LAadv

(6)

The discriminators are trained to minimize:

LBdisc
= (DB(IB)− 1)2 + (DB(GAB(IA)))

2 (7)

LAdisc
= (DA(IA)− 1)2 + (DA(GBA(IB)))

2 (8)

The final discriminator objective Ldisc to be minimized

becomes:
Ldisc = LBdisc

+ LAdisc
(9)

Using the image denoiser R, a cycle-consistency loss

[12] is computed between the input images and the recon-

structed images:

LArec
= ‖IA − ÎA‖1 (10)

LBrec
= ‖IB − ÎB‖1 (11)

where

ÎA = GBA(GAB(IA)−R(GAB(IA))) (12)

ÎB = GAB(GBA(IB)−R(GBA(IB))) (13)

The generator objective Lgen becomes:

Lgen = λrec ∗ Lrec + λadv ∗ Ladv (14)

with each λ weighing the importance of individual ob-

jectives. The generators GAB, GBA that minimize the com-

plete objective are:

GAB, GBA = argmin
GAB,GBA,DB,DA

Lgen + Ldisc (15)

4. Experimental Setup

We compare a baseline semantic segmentation model

(Deeplab V3+ with Mobilenet backbone [2]) trained on

the Cityscapes train split, and the same model fine-tuned

with data generated using standard CycleGAN, MUNIT [8],

DRIT[9] and our method. We chose these methods for their

relative popularity and similar complexity to our method.

4.1. The denoising network

We make use of the reference implementation of

DNCNN1 [10], which is trained for blind Gaussian denois-

ing with a large range of noise levels (σ ∈ [0, 55]). The

network is frozen during our training and inference runs.

4.2. Training, generating data and fine­tuning

For training the data generation pipeline, we divide the

training split of Cityscapes dataset in two equal shuffled sets

of 1488 images each, and use the first set as the day-domain

dataset, while using the testing split of NightTimeDriving

as the night-domain dataset. For standard CycleGAN and

our method, we follow the regimen of [12] and train for 50

epochs. For MUNIT, we follow the regimen described in

[8] and train for 100000 iterations. Similarly, for DRIT, we

follow the authors of [9] and train for 105000 iterations.

To test the quality of the generated data, we apply day-

to-night style transfer to the second set of 1488 Cityscapes

images, using generators trained with each of the frame-

works mentioned above, producing images at both 512x256

1https://github.com/cszn/DnCNN
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Figure 3: We demonstrate qualitatively that out method significantly reduces the amount and distribution of steganographic

information. We add a perturbation (circled in yellow) to an input image and observe the effect it produces on the output of

the generator. The first row shows results using Standard CycleGAN, while the second row shows results from our method.

In contrast to Standard CycleGAN, where the perturbation is encoded throughout the image and with large amplitudes, our

method encodes this information mostly locally, around the spatial location of the perturbation and along edges with large

contrast. Note that the difference is computed over images that have NOT been denoised by the denoiser, and represent the

raw output of the generator. Additionally, note that our results are much closer to the ground truth map.

and 1024x512 resolutions, and use this data to fine-tune the

semantic segmentation model. Note that, for our method,

the denoising network is not used at runtime. Finally, we

evaluate the baseline segmentation model and each fine-

tuned model on the test split of the NightTimeDriving [5]

dataset, measuring Mean Intersection Over Union (mIOU).

As night-time datasets with groundtruth annotations are

scarce, the NightTimeDriving test split is used both as a

night-time style for data generation, and as the test set for

semantic segmentation. However, pollution of the gener-

ated data from the style information is minimal, and all

methods are benchmarked with exactly the same setup.

5. Results

5.1. Quantitative results

While all methods performed far better than the baseline,

the results presented in Table 1 indicate that our simple de-

noising strategy produces superior training data compared

to MUNIT, DRIT and standard CycleGAN, at both resolu-

tions. Note that our aim is to compare methods in relative

terms and not to obtain absolute state-of-the-art results.

5.2. Qualitative results

In Figure 3, we show that our method significantly re-

duces the amount and distribution of steganographic infor-

mation. Following the experiment proposed in [3], we first

train our denoising-CycleGAN on an aerial-photo↔map

Table 1: Semantic segmentation mIOU for all methods

Trained on

Training

resolution

Source

Domain
MUNIT CycleGAN DRIT Ours

512x256 0.1305 0.1820 0.2231 0.2361 0.2630

1024x512 0.1305 0.2323 0.2700 0.2709 0.2971

dataset. We add a perturbation (circled in yellow) to an in-

put image and observe the effect it produces on the output

of the generator by computing the absolute difference be-

tween the map obtained from the unperturbed image and

the map obtained from the perturbed image. In contrast

to Standard CycleGAN, where the perturbation is encoded

throughout the image and with large amplitudes, images

generated using our method encode this information mostly

locally, around the spatial location of the perturbation and

along edges with large contrast.

6. Conclusions

We have presented a simple way to reduce stegano-

graphic information within cycle-consistency GANs and

better align generated images with a target distribution. We

have demonstrated this quantitatively by showing that us-

ing the improved generated images to fine-tune a semantic

segmentation model leads to better performance on a real-

world difficult dataset, and qualitatively by showing that the

extent and amplitude of hidden information is reduced.
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